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Summary

Marine turtles undergo dramatic ontogenic changes in
body size and behavior, with the loggerhead sea turtle,

Caretta caretta, typically switching from an initial oce-
anic juvenile stage to one in the neritic, where matura-

tion is reached and breeding migrations are subse-
quently undertaken every 2–3 years [1–3]. Using

satellite tracking, we investigated the migratory move-
ments of adult females from one of the world’s largest

nesting aggregations at Cape Verde, West Africa. In
direct contrast with the accepted life-history model

for this species [4], results reveal two distinct adult for-
aging strategies that appear to be linked to body size.

The larger turtles (n = 3) foraged in coastal waters,
whereas smaller individuals (n = 7) foraged oceani-

cally. The conservation implications of these findings
are profound, with the population compartmentalized

into habitats that may be differentially impacted by
fishery threats in what is a global fishing hotspot [5].

Although the protection of discrete areas containing
coastal individuals may be attainable, the more numer-

ous pelagic individuals are widely dispersed with indi-
viduals roaming over more than half a million square

kilometers. Therefore, mitigation of fisheries by-catch
for sea turtles in the east Atlantic will likely require
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complex and regionally tailored actions to account

for this dichotomous behavior.

Results and Discussion

We tracked ten postnesting loggerhead turtles from the
Cape Verde Islands and integrated spatial movements
with a range of remotely sensed oceanographic informa-
tion. Data highlighted two distinct movement patterns.

Group 1—neritic turtles (n = 3; individuals a–c)—trav-
eled southeast after the completion of nesting. Individ-
uals a and b followed a relatively direct path down the
West African coast (traveling for 35 and 50 days,
straightness index 0.73 and 0.85, respectively) to forag-
ing areas off Guinea and Sierra Leone (mean of mean
displacement from release location for all turtles in this
group 1253 km; Figure 1A). These turtles remained
within a relatively discrete foraging area inside the 100
m isobath for the duration of the tracking project (forag-
ing area: 112, 177, and 421 km2, respectively; Figure S1
in the Supplemental Data available online). Mean ocean
depth at filtered locations was 60 m, 26 m, and 59 m for
locations received from turtles a, b, and c, respectively.
With more than 89% of locations received from these in-
dividuals in water <100 m deep (range 1–3511 m), it is
likely that these turtles foraged benthically. Dive-profile
data collected by the transmitter on individual c demon-
strated long dives to the seafloor (approximately 60 m
water depth; Figures 2A and 2B).

Group 2—oceanic turtles (n = 7; individuals d–j)—ini-
tially headed eastward from Cape Verde, generally to-
ward mainland Africa. Their subsequent movements
were not typically directed to one specific foraging
area (mean straightness index 0.33 6 0.38, standard
deviation [SD]), and they traveled extensively over
a wide range from 10.5º to 19.1ºN and 16.4º to 25.0ºW
(Figure 1B). They did not appear to be seeking a specific
location; rather, they were likely foraging while traveling
in the oceanic environment with mean distance covered
on a weekly basis (with filtered data) ranging from 111 to
205 km (mean of means 160 6 33 km). These large-scale
movements were mostly restricted to the territorial wa-
ters of Mauritania and Senegal, but also included waters
of The Gambia, Guinea, and Guinea Bissau (mean of
mean displacement from release location for all turtles:
415 km 6 118 km, range 177–544 km). Water depth at
the filtered locations for these turtles ranged from
3–5005 m with more than 98% of locations centered in
water deeper than 500 m. Information collected by the
transmitter on individual d demonstrated that this turtle
was making short, shallow dives in deep oceanic waters,
suggesting that this group of animals forages epipelagi-
cally (Figures 2C and 2D). Comparison of the wandering
movements of these turtles with ocean surface-current
data (Movie S1) shows clear correspondence between
turtle movement and current speed and direction, sug-
gesting that movements are at least in part driven by
local surface currents. We also propose that the turtles
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Figure 1. Migratory Patterns and Foraging

Areas of Postnesting Loggerhead Turtles

Patterns of movement of the two groups are

remarkably different.

(A) Migratory route and foraging areas of

group 1 turtles (a–c) to the coast of Guinea

and Sierra Leone. Note that for individual c,

too few transmissions were received on mi-

gration to allow accurate reconstruction of

the route, but reliable transmissions resumed

in the foraging area.

(B) Routes of group 2. For both graphics,

labeled circles mark the endpoint of each

migratory route. The 500 m isobath is marked.
were occasionally amending their positions in and be-
tween local surface currents, allowing them to remain
within the highly productive waters off West Africa
throughout the tracking study. There is notable individ-
ual variation within the oceanic foraging pattern, likely
largely driven by the stochastic nature of the oceanic
environment.

Although sample size in this study was limited, the
major findings, based on long-term tracking data, sug-
gest a clear dichotomy in behavior for adult turtles
from Cape Verde. In the study animals, body size corre-
lated markedly with foraging mode, with group 1 turtles
(foraging neritically) being significantly larger than tur-
tles from group 2 (foraging oceanically; Mann Whitney
U1,9 = 0.00, p < 0.05, Figure 3). The West African region
over which the study animals dispersed is a hotspot
of primary productivity within the tropical Atlantic
(Figure S2), and we extracted data for chlorophyll
a levels to see whether the behavioral differences be-
tween the two groups were linked to local differences
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Figure 2. Contrasting Dive Patterns of Neritic

and Pelagic Turtles

Neritic turtles make long, deep foraging dives

whereas oceanic turtles make short, shallow

dives to feed in the epipelagic zone. Fre-

quency distribution of (A) maximum depth

per dive (44.5 6 21.9 m) and (B) dive duration

(34.6 6 18.5 min) for neritic individual c (n =

245 dives) and (C) maximum depth per dive

(8.9 6 9.7 meters) and (D) dive duration (7.9

6 12.9 min) for oceanic individual d (n = 791

dives) are shown.
in resource availability or quality. The coastal foraging
areas used by neritic turtles showed significantly higher
primary productivity than those used by oceanic turtles
(Mann Whitney U1,8 = 1, p < 0.05). Water temperatures
experienced were not significantly different between
the two groups (Mann Whitney U1,9 = 2, p = 0.07).

In the generally accepted life-history model for the
loggerhead turtle, hatchlings leave their natal beach
and enter the sea, traveling to oceanic habitats and for-
aging on small, floating items such as Sargassum, mol-
luscs, cnidarians, and crustacea [4, 6]. When juveniles
reach sizes between 40 and 60 cm carapace length,
they begin to recruit to the neritic zone close to their na-
tal area [1, 7] while other individuals remain in the oce-
anic habitat or shuttle between the two [3]. The age of ju-
venile loggerheads at this ontogenetic switch is thought
to be approximately 14 years [8]. At sexual maturity
(circa 30 years [8]), adult turtles will switch from subadult
to adult neritic foraging habitats, feeding mainly on
large benthic slow-moving or sessile organisms [1, 9].
These adult neritic foraging habitats have been widely
identified for nesting populations in the Atlantic [1, 9],
Pacific [10, 11], and Indian Oceans [12] and the Mediter-
ranean Sea [13, 14]. Thereafter, adults exhibit philopatry,
shuttling between natal breeding areas and their neritic
foraging areas [2, 4].

It is apparent that the life history of adult loggerhead
turtles from Cape Verde differs markedly from this
model. Epipelagic foraging has been recorded for adult
female loggerheads in Japan [15], where there is a similar
dichotomy in body size and foraging strategy. However,
routine epipelagic foraging in an adult loggerhead pop-
ulation has not been reported before in the Atlantic. It
has been speculated that in the western Atlantic, logger-
head sea turtles recruit to the neritic zone by the time
they have reached 64 cm in order to maximize growth
rates relative to the oceanic zone [4]. However, we
have recorded turtles of up to 86.5 cm foraging oceani-
cally with 91% of nesting turtles in this population being
this size or smaller. Although this study includes a limited
number of animals, smaller body size linked to oceanic
foraging suggests that this behavior may be exhibited
Figure 3. Length-Frequency Histogram of the

Cape Verde Loggerhead Turtle Population

The nesting population at Cape Verde ex-

hibits a broad range of body sizes. Frequency

histogram showing carapace lengths (curved

carapace length, CCL) recorded for turtles

nesting at Boavista, Cape Verde, in 2004.

Sizes of individuals from group 1 (neritic for-

aging) and group 2 (oceanic foraging) are indi-

cated by the numbers 1 and 2, respectively.
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by the majority of adults in the Cape Verde population.
Interestingly, both records of oceanic foraging in adults
of this species have come from insular nesting popula-
tions, and it is possible that similarities in productivity
and surface currents, or other factors, account for this
unusual behavior. The absolute range and limits of sizes
over which these two adult strategies occur remain un-
defined. It is possible that oceanic foraging turtles are
not able to invest as much energy into growth as turtles
inhabiting coastal areas because they do not experience
the high quality and abundance of prey available in the
neritic. Or perhaps at a threshold carapace size, smaller
oceanic turtles become large enough to capably exploit
the neritic of West Africa and undergo an ontogenetic
shift to coastal waters. Although growth rates have not
been established for this population, other conspecific
populations show little to no growth upon reaching
reproductive maturity [16], suggesting that any shift
between the two groups observed (oceanic and neritic)
would be unlikely.

This unusual behavioral dichotomy is of particular in-
terest, both from fundamental and applied perspectives.
Intraspecific variation in body size has an important influ-
ence on life-history characteristics in many other species
[17] and can lead to segregation of behavioral strategies,
e.g., flying ability in albatrosses [18], migratory distance
in elephant seals [19], and diving ability in marine iguanas
[20]. Body size is positively correlated with fecundity in
marine turtles [21] and also limits diving capacity (e.g.,
for foraging) in a variety of air-breathing marine animals.
Larger divers exhibit better capacity for oxygen storage,
lower metabolic rate, and less inertia and drag relative to
smaller divers, and they are less limited in dive duration
[22, 23]. For those individuals carrying dive-logging
transmitters, the larger, neritic turtle in this study per-
formed significantly deeper (Mann Whitney U1,1627 =
107,991, p < 0.01, Figure 2) and longer (Mann Whitney
U1,1626 = 103,115, p < 0.01, Figure 2) dives than the
smaller oceanic turtle.

There are higher levels of primary productivity in the
coastal zone relative to oceanic waters in this study.
Thus, animals foraging in the neritic likely experience
more abundant and reliable food sources than oceani-
cally foraging animals. Where they have been studied,
turtles foraging benthically (i.e., in the neritic) normally
feed on prey such as arthropods, decapods, gastropod
molluscs, and other benthic invertebrates [6], whereas
turtles foraging oceanically probably feed on epipelagic
prey [24]. The fact that oceanic turtles tracked in this
study moved in and out of the neritic zone at Mauritania
and Senegal without stopping to forage in shallower
waters is suggestive of selective pressures acting to
keep the turtles in the oceanic zone. This could include
factors such as smaller turtles lacking the ability to
exploit coastal resources because of reduced diving
capacity, increased predation risk, or reduced intraspe-
cific competitive ability.

The presence of different migratory strategies for tur-
tles tracked from Cape Verde has significant implications
for conservation of the population at large. First, there
appear to be at least two demographic units that should
be considered as part of any monitoring and conserva-
tion efforts. Second, the major threat to sea turtles in
West Africa comes from direct and indirect take in both
artisanal and commercial fisheries [5, 25, 26] with differ-
ent fisheries operating in coastal and oceanic waters.
This complicates conservation efforts, especially when
one considers the geographic scales involved. Larger re-
productive turtles observed in this study remained in rel-
atively discrete foraging areas off the coast of Guinea
and Sierra Leone. Our results suggest that a larger pro-
portion of the important adult reproductive population
are oceanic, foraging in the waters from Mauritania to
Guinea Bissau, and also in international waters (total for-
aging area for oceanic turtles in this study was greater
than half a million square kilometres). Finally, given the
range demonstrated thus far, conservation of this popu-
lation necessitates international cooperative efforts in
seven African states (Cape Verde, Mauritania, Senegal,
The Gambia, Guinea Bissau, Guinea, and Sierra Leone).
In addition, the waters of the eastern central Atlantic
represent a hotspot for pelagic longline fisheries [5],
with the majority of the fishing fleet from China, Equato-
rial Guinea, and several Central American countries (e.g.,
Belize, Honduras, and Panama). The problems inherent
in implementing and enforcing measures to reduce or
eliminate by-catch are obvious. Widespread use of
‘‘flags of convenience’’ throughout the region, whereby
vessel owners register in foreign nations to exploit
more relaxed vessel registration standards, labor laws,
and conservation regulations, complicates matters fur-
ther. Conservation priorities should focus on less harm-
ful gear types and increased coverage of observer and
training programs.

Knowledge of marine vertebrates lags behind that of
many other groups, hindering their management and
conservation [27]. This study has underlined how satel-
lite tagging can quickly facilitate tremendous insights
into the range, routes, and foraging behavior of marine
turtles. We have uncovered what appears to be a funda-
mental dichotomy in life-history strategy of Atlantic log-
gerhead turtles that has only been previously described
in Japan [15] and never before in the Atlantic Ocean. Our
findings hold profound conservation ramifications with
regard to population monitoring and fisheries-impact
mitigation.

Experimental Procedures

Transmitter attachment was carried out according to previously

tested methods [28], and spatial movement data were automatically

downloaded, interpreted and analyzed with the Satellite Tracking

and Analysis Tool (STAT; [29]), where they were also integrated

with sea surface-current, bathymetry, and chlorophyll data. Trans-

mitters were Sirtrack Kiwisat model 101’s (n = 6, individuals a, b, e,

and h–j), Telonics model ST-14’s (n = 2, individuals f and g), and

dive-recording Sea Mammal Research Unit 90003 Satellite Relay

Data Loggers (n = 2, individuals c and d; for more details, see Table

S1). Individuals a, b, and d–i were tracked after the nesting season

of 2004, and individuals c and j were tracked in 2005. Transmitters

gave locations for 57 to 566 days (mean 249 days, 6 153 SD). All

location data were filtered with STAT before analysis (retained loca-

tions were those that resulted in speeds of <5 km/hr21 and >5º turn-

ing angle). Only one data point per 24 hr was used to reduce the

effects of serial autocorrelation within the data. Data from the inter-

nesting period were excluded from analyses. Straightness index

was calculated as the ratio of the straight line distance between the

release location and last transmitted location over the total distance

traveled. Foraging areas were calculated with data from location

classes 3, 2, and 1 by using Hawth’s Analysis Tools for ArcGIS

(http://www.spatialecology.com/htools/) and ArcGIS 9.0 to generate

http://www.spatialecology.com/htools/
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minimum convex polygons. Sea surface-current (geostrophic

velocity vector) data were obtained from AVISO (http://www.aviso.

oceanobs.com/html/donnees/tools/citations_uk.html). Bathymetric

data were sampled from the General Bathymetric Chart of the Oceans

(GEBCO 1-Minute Global Bathymetry Grid, http://www.bodc.

ac.uk/projects/international/gebco/gebco_digital_atlas). Chloro-

phyll data were sampled in a similar fashion from NASA’s Ocean

Color project MODIS satellite-based sensor (http://oceancolor.

gsfc.nasa.gov/). Morphometric data for turtles (curved carapace

length [30]) were taken as part of an ongoing nesting-beach monitor-

ing project.

Supplemental Data

Supplemental Data include one movie, two figures, and one table and

are available with this article online at: http://www.current-biology.

com/cgi/content/full/16/10/990/DC1/.
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